
NAG C Library Function Document

nag_mesh2d_renum (d06ccc)

1 Purpose

nag_mesh2d_renum (d06ccc) renumbers the vertices of a given mesh using a Gibbs method, in order the
reduce the bandwidth of Finite Element matrices associated with that mesh.

2 Specification

#include <nag.h>
#include <nagd06.h>

void nag_mesh2d_renum (Integer nv, Integer nelt, Integer nedge, Integer nnzmax,
Integer *nnz, double coor[], Integer edge[], Integer conn[], Integer irow[],
Integer icol[], Integer itrace, const char *outfile, NagError *fail)

3 Description

nag_mesh2d_renum (d06ccc) uses a Gibbs method to renumber the vertices of a given mesh in order to
reduce the bandwidth of the associated Finite Element matrix A. This matrix has elements aij such that:

aij 6¼ 0) i and j are vertices belonging to the same triangle.

This function reduces the bandwidth m, which is the smallest integer such that aij 6¼ 0 whenever
i� jj j > m (see Gibbs et al. (1976) for details about that method). nag_mesh2d_renum (d06ccc) also
returns the sparsity structure of the matrix associated with the renumbered mesh.

This function is derived from material in the MODULEF package from INRIA (Institut National de
Recherche en Informatique et Automatique).

4 References

Gibbs N E, Poole W G Jr and Stockmeyer P K (1976) An algorithm for reducing the bandwidth and
profile of a sparse matrix SIAM J. Numer. Anal. 13 236–250

5 Arguments

1: nv – Integer Input

On entry: the total number of vertices in the input mesh.

Constraint: nv � 3.

2: nelt – Integer Input

On entry: the number of triangles in the input mesh.

Constraint: nelt � 2� nv� 1.

3: nedge – Integer Input

On entry: the number of the boundary edges in the input mesh.

Constraint: nedge � 1.

d06 – Mesh Generation d06ccc

[NP3660/8] d06ccc.1

4: nnzmax – Integer Input

On entry: the maximum number of non-zero entries in the matrix based on the input mesh. It is the
dimension of the arrays irow and icol as declared in the function from which nag_mesh2d_renum
(d06ccc) is called.

Constraint: 4� neltþ nv � nnzmax � nv2.

5: nnz – Integer * Output

On exit: the number of non-zero entries in the matrix based on the input mesh.

6: coor½2� nv� – double Input/Output

On entry: coor½2� i� 1ð Þ� contains the x co-ordinate of the ith input mesh vertex, for
i ¼ 1; . . . ; nv; while coor½2� i� 1ð Þ þ 1� contains the corresponding y co-ordinate.

On exit: coor½2� i� 1ð Þ� will contain the x co-ordinate of the ith renumbered mesh vertex, for
i ¼ 1; . . . ; nv; while coor½2� i� 1ð Þ þ 1� will contain the corresponding y co-ordinate.

7: edge½3� nedge� – Integer Input/Output

On entry: the specification of the boundary or interface edges. edge½3� j� 1ð Þ� and
edge½3� j� 1ð Þ þ 1� contain the vertex numbers of the two end points of the jth boundary edge.
edge½3� j� 1ð Þ þ 2� is a user-supplied tag for the jth boundary or interface edge:
edge½3� j� 1ð Þ þ 2� ¼ 0 for an interior edge and has a non-zero tag otherwise. Note that the
edge vertices are numbered from 1 to nv.

On exit: the renumbered specification of the boundary or interface edges.

Constraint: 1 � edge½3� j� 1ð Þ þ i� 1� � nv and edge½3� j� 1ð Þ� 6¼ edge½3� j� 1ð Þ þ 1�, for
i ¼ 1; 2 and j ¼ 1; 2; . . . ;nedge.

8: conn½3� nelt� – Integer Input/Output

On entry: the connectivity of the mesh between triangles and vertices. For each triangle j,
conn½3� j� 1ð Þ þ i� 1� gives the indices of its three vertices (in anticlockwise order), for
i ¼ 1; 2; 3 and j ¼ 1; . . . ; nelt. Note that the mesh vertices are numbered from 1 to nv.

On exit: the renumbered connectivity of the mesh between triangles and vertices.

Constraint: 1 � conn½3� j� 1ð Þ þ i� 1� � nv and conn½3� j� 1ð Þ� 6¼ conn½3� j� 1ð Þ þ 1�
and conn½3� j� 1ð Þ� 6¼ conn½3� j� 1ð Þ þ 2� and
conn½3� j� 1ð Þ þ 1� 6¼ conn½3� j� 1ð Þ þ 2�, for i ¼ 1; 2; 3 and j ¼ 1; 2; . . . ;nelt.

9: irow½nnzmax� – Integer Output
10: icol½nnzmax� – Integer Output

On exit: the first nnz elements contain the row and column indices of the non-zero elements
supplied in the Finite Element matrix A.

11: itrace – Integer Input

On entry: the level of trace information required from nag_mesh2d_renum (d06ccc).

itrace � 0

No output is generated.

itrace ¼ 1

Information about the effect of the renumbering on the Finite Element matrix are output.
This information includes the half bandwidth and the sparsity structure of this matrix before
and after renumbering.

d06ccc NAG C Library Manual

d06ccc.2 [NP3660/8]

itrace > 1

The output is similar to that produced when itrace ¼ 1 but the sparsities (for each row of the
matrix, indices of non-zero entries) of the matrix before and after renumbering are also
output.

12: outfile – const char * Input

On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the
diagnostic output will be directed to standard output.

13: fail – NagError * Input/Output

The NAG error argument (see Section 2.6 of the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument valueh i had an illegal value.

NE_FAIL_SPARSITY

An error has occurred during the computation of the compact sparsity of the Finite Element matrix.
Check the Triangle/Vertices connectivity.

NE_INT

On entry, nedge ¼ valueh i.
Constraint: nedge � 1.

On entry, nv ¼ valueh i.
Constraint: nv � 3.

NE_INT_2

On entry, nelt ¼ valueh i, nv ¼ valueh i.
Constraint: nelt � 2� nv� 1.

On entry, the endpoints of the edge j have the same index i: j ¼ valueh i, i ¼ valueh i.
On entry, vertices 1 and 2 of the triangle k have the same index i: k ¼ valueh i, i ¼ valueh i.
On entry, vertices 1 and 3 of the triangle k have the same index i: k ¼ valueh i, i ¼ valueh i.
On entry, vertices 2 and 3 of the triangle k have the same index i: k ¼ valueh i, i ¼ valueh i.

NE_INT_3

On entry, nnzmax < 4� neltþ nvð Þ or nnzmax > nv2: nnzmax ¼ valueh i, nelt ¼ valueh i,
nv ¼ valueh i.

NE_INT_4

On entry, conn i; jð Þ < 1 or conn i; jð Þ > nv, where conn i; jð Þ denotes conn½3� j� 1ð Þ þ i� 1�:
conn i; jð Þ ¼ valueh i, i ¼ valueh i, j ¼ valueh i, nv ¼ valueh i.
On entry, edge i; jð Þ < 1 or edge i; jð Þ > nv, where edge i; jð Þ denotes edge½3� j� 1ð Þ þ i� 1�:
edge i; jð Þ ¼ valueh i, i ¼ valueh i, j ¼ valueh i, nv ¼ valueh i.

d06 – Mesh Generation d06ccc

[NP3660/8] d06ccc.3

NE_INTERNAL_ERROR

A serious error has occurred in an internal call to the renumbering function. Check the input mesh
especially the connectivity. Seek expert help.

NE_NOT_CLOSE_FILE

Cannot close file valueh i.

NE_NOT_WRITE_FILE

Cannot open file valueh i for writing.

7 Accuracy

Not applicable.

8 Further Comments

Not applicable.

9 Example

In this example, a geometry with two holes (two interior circles inside an exterior one) is considered. The
geometry has been meshed using the simple incremental method (nag_mesh2d_inc (d06aac)) and it has
250 vertices and 402 triangles (see Figure 1). The function nag_mesh2d_bound (d06bac) is used to
renumber the vertices, and one can see the benefit in terms of the sparsity of the Finite Element matrix
based on the renumbered mesh (see Figure 2).

9.1 Program Text

/* nag_mesh2d_renum (d06ccc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagd06.h>

#define EDGE(I,J) edge[3*((J)-1)+(I)-1]
#define CONN(I,J) conn[3*((J)-1)+(I)-1]
#define COOR(I,J) coor[2*((J)-1)+(I)-1]

int main(int argc, char* argv[])
{

Integer exit_status, i, itrace, nedge, nelt, nnz, nnzmax, nv, reftk;
NagError fail;
char pmesh[2];
double *coor=0;
Integer *conn=0, *edge=0, *icol=0, *irow=0;

INIT_FAIL(fail);
exit_status = 0;

Vprintf(" nag_mesh2d_renum (d06ccc) Example Program Results\n\n");

/* Skip heading in data file */

Vscanf("%*[^\n] ");

/* Reading of the geometry */

d06ccc NAG C Library Manual

d06ccc.4 [NP3660/8]

Vscanf("%ld", &nv);
Vscanf("%ld", &nelt);
Vscanf("%ld", &nedge);
Vscanf("%*[^\n] ");

nnzmax = 10*nv;

/* Allocate memory */

if (!(coor = NAG_ALLOC(2*nv, double)) ||
!(conn = NAG_ALLOC(3*nelt, Integer)) ||
!(edge = NAG_ALLOC(3*nedge, Integer)) ||
!(irow = NAG_ALLOC(nnzmax, Integer)) ||
!(icol = NAG_ALLOC(nnzmax, Integer)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

for (i = 1; i <= nv; ++i)
{

Vscanf("%lf", &COOR(1,i));
Vscanf("%lf", &COOR(2,i));
Vscanf("%*[^\n] ");

}

for (i = 1; i <= nelt; ++i)
{

Vscanf("%ld", &CONN(1,i));
Vscanf("%ld", &CONN(2,i));
Vscanf("%ld", &CONN(3,i));
Vscanf("%ld", &reftk);
Vscanf("%*[^\n] ");

}

for (i = 1; i <= nedge; ++i)
{

Vscanf("%ld", &reftk);
Vscanf("%ld", &EDGE(1,i));
Vscanf("%ld", &EDGE(2,i));
Vscanf("%ld", &EDGE(3,i));
Vscanf("%*[^\n] ");

}

Vscanf(" ’ %1s ’", pmesh);
Vscanf("%*[^\n] ");

/* Compute the sparsity of the FE matrix */
/* from the input geometry */

/* nag_mesh2d_sparse (d06cbc).
* Generates a sparsity pattern of a Finite Element matrix
* associated with a given mesh
*/

nag_mesh2d_sparse(nv, nelt, nnzmax, conn, &nnz, irow, icol, &fail);

if (fail.code == NE_NOERROR)
{

if (pmesh[0] == ’N’)
{

Vprintf(" The Matrix Sparsity characteristics\n");
Vprintf(" before the renumbering\n");
Vprintf(" nv =%6ld\n", nv);
Vprintf(" nnz =%6ld\n", nnz);

}
else if (pmesh[0] == ’Y’)

{
/* Output the sparsity of the mesh to view */
/* it using the NAG Graphics Library */

d06 – Mesh Generation d06ccc

[NP3660/8] d06ccc.5

Vprintf(" %10ld%10ld\n", nv, nnz);

for (i = 0; i < nnz; ++i)
Vprintf(" %10ld%10ld\n", irow[i], icol[i]);

}
else

{
Vprintf("Problem with the printing option Y or N\n");
exit_status = -1;
goto END;

}
}

else
{

Vprintf("Error from nag_mesh2d_sparse (d06cbc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Call the renumbering routine and get the new sparsity */

itrace = 1;

/* nag_mesh2d_renum (d06ccc).
* Renumbers a given mesh using Gibbs method
*/

nag_mesh2d_renum(nv, nelt, nedge, nnzmax, &nnz, coor, edge, conn, irow, icol,
itrace, 0, &fail);

if (fail.code == NE_NOERROR)
{

if (pmesh[0] == ’N’)
{

Vprintf("\n The Matrix Sparsity characteristics\n");
Vprintf(" after the renumbering\n");
Vprintf(" nv =%6ld\n", nv);
Vprintf(" nnz =%6ld\n", nnz);
Vprintf(" nelt =%6ld\n", nelt);

}
else if (pmesh[0] == ’Y’)

{
/* Output the sparsity of the renumbered mesh */
/* to view it using the NAG Graphics Library */

Vprintf("%10ld%10ld\n", nv, nnz);

for (i = 0; i < nnz; ++i)
Vprintf(" %10ld%10ld\n", irow[i], icol[i]);

/* Output the renumbered mesh to view */
/* it using the NAG Graphics Library */

Vprintf(" %10ld%10ld\n", nv, nelt);

for (i = 1; i <= nv; ++i)
Vprintf(" %12.6e %12.6e \n",

COOR(1,i), COOR(2,i));

reftk = 0;
for (i = 1; i <= nelt; ++i)

Vprintf(" %10ld%10ld%10ld%10ld\n",
CONN(1,i), CONN(2,i), CONN(3,i), reftk);

}
}

else
{

Vprintf("Error from nag_mesh2d_renum (d06ccc).\n%s\n", fail.message);
exit_status = 1;
goto END;

}

d06ccc NAG C Library Manual

d06ccc.6 [NP3660/8]

END:
if (coor) NAG_FREE(coor);
if (conn) NAG_FREE(conn);
if (edge) NAG_FREE(edge);
if (irow) NAG_FREE(irow);
if (icol) NAG_FREE(icol);

return exit_status;
}

9.2 Program Data

Note 1: since the data file for this example is quite large only a section of it is reproduced in this document.
The full data file is distributed with your implementation.

d06ccc Example Program Data
250 402 100 :NV NELT NEDGE

0.100000E+01 0.000000E+00
.
.
.

0.112781E+00 0.103479E+00 :COOR(1:2,1:NV)
21 55 56 1

.

.

.
151 250 155 1 :(CONN(:,K), REFT, K=1,...,NELT)

1 1 2 1
.
.
.

100 100 71 1 :(I1, EDGE(:,I), I=1,NEDGE)
’N’ :Printing option ’Y’ or ’N’

9.3 Program Results

nag_mesh2d_renum (d06ccc) Example Program Results

The Matrix Sparsity characteristics
before the renumbering
nv = 250
nnz = 1556

INITIAL HALF-BAND-WIDTH: 234 INITIAL PROFILE: 18233
FINAL HALF-BAND-WIDTH : 28 FINAL PROFILE : 4038

The Matrix Sparsity characteristics
after the renumbering
nv = 250
nnz = 1556
nelt = 402

d06 – Mesh Generation d06ccc

[NP3660/8] d06ccc.7

Figure 1
Mesh of the geometry

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
Figure 2

Sparsity of the matrix before (top) and after (bottom) the renumbering

d06ccc NAG C Library Manual

d06ccc.8 (last) [NP3660/8]

	d06ccc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	nv
	nelt
	nedge
	nnzmax
	nnz
	coor
	edge
	conn
	irow
	icol
	itrace
	outfile
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_FAIL_SPARSITY
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_INT_4
	NE_INTERNAL_ERROR
	NE_NOT_CLOSE_FILE
	NE_NOT_WRITE_FILE

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

